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Contrary to a recent literature that questions whether price caps are effective, and even sensitive, 

under demand uncertainty, we show that in the absence of quantity precommitment the effects of 

a price cap are the same whether the demand is uncertain or deterministic. Next we study the 

effectiveness of a price cap to regulate a monopoly that makes irreversible capacity investments 

ex-ante, and then chooses its output up to capacity upon observing the realization of demand. In 

this more interesting scenario the optimal price cap, which must trade off the incentives for 

capacity investment and capacity withholding, is well above the unit cost of capacity, and may be 

below the price cap that maximizes capacity. Further, under standard assumptions on the demand 

distribution the comparative static properties of price caps above the optimal price cap are 

analogous to those they have in the absence of capacity precommitment. Nevertheless, a price cap 

alone cannot eliminate inefficiencies.   
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1 Introduction

Since Littlechild (1983)�s report, price cap regulation is regarded as an e¤ective in-

strument to mitigate market power, foster cost minimization, and ultimately enhance

surplus: When precise information about cost and demand is available, the introduc-

tion of a binding price cap rises �rms�marginal revenue near the equilibrium output

and leads to an increase of the equilibrium output and surplus, and to a decrease

of the market price. Moreover, under broad regularity conditions on the demand

and cost functions, for any price cap above marginal cost both output and surplus

decrease, and the market price increases with the price cap. Further, in the most

favorable conditions (e.g., when �rms produce the good with constant returns to

scale), a price cap equal to marginal cost is able to eliminate ine¢ ciencies. (In con-

trast, rate-of-return regulation, used for most of the 20th century to regulate public

utilities, distorts incentives for cost minimization �see, e.g., Joskow (1972) �or cost

reduction �see, e.g., Cabral and Riordan (1989).)

We study the e¤ectiveness of price cap regulation under demand uncertainty.1

We begin by showing that in the absence of quantity precommitment, e.g., when

the good can be produced instantly upon the realization of demand or there is slack

capacity, the e¤ects of price caps remain exactly the same as when the demand is

deterministic. These preliminary results naturally raise the question of how price

caps a¤ect capacity decisions.

In order to tackle this issue, we consider a setting in which a monopolist makes

irreversible capacity investments ex-ante, and then chooses its output up to capac-

ity upon observing the realization of demand. Thus, the monopolist may withhold

capacity if it �nds it bene�cial to do so. Capacity withholding is common in many

important markets such as sport events, hotel accommodation, electricity, or agri-

cultural products.2 In this setting, ine¢ ciencies arise both because the monopolist

1Demand uncertainty may be interpreted also as variations of demand over time, as is common

in electricity markets �see, e.g., Green and Newbery (1992).
2In electricity markets �rms may declare some of their generators to be unavailable �data for

the California electricity market during the time period May 2000-December 2001 show that at the

price cap some generators did not supply all of their uncommitted capacity �see Cramton (2003)

and Joskow and Kahn (2002). In markets for agricultural products, farmer associations sometimes

destroy part of the output.
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installs a low level of capacity in order to precommit to high prices, and because the

monopolist withholds capacity for low demand realizations in order to avoid prices

to fall too low.3

The e¤ects of price cap regulation with demand uncertainty and capacity pre-

commitment and withholding are subtle. We show that, much as in the absence of

capacity precommitment, the introduction of a (su¢ ciently large) binding price cap

raises the �rms�marginal return to capacity investment near the equilibrium capacity

and leads to an increase of the equilibrium capacity, the expected output and the ex-

pected total surplus, and to a decrease of the expected market price. However, price

caps near the unit cost of capacity are suboptimal because they reduce the return to

capacity investment below its cost, and lead the monopolist to install no capacity.

The optimal price cap (i.e., the price cap that maximizes surplus) must trade o¤

appropriately the incentives for capacity investment and capacity withholding, and

tends to be well above the unit cost of capacity. When the unit cost of capacity is

high the e¤ect on capacity investment is dominant, and the optimal price cap maxi-

mizes capacity investment. When the unit cost of capacity is low, reducing the price

cap below the level that maximizes capacity investment increases expected surplus.

(Thus, in this case maximizing capacity investment does not warrant maximizing

expected surplus.)

With capacity precommitment and withholding the comparative static properties

of price caps are more complex than in the (static) setting in which the monopolist can

produce an arbitrary output upon the realization demand. Under standard regularity

assumptions on the demand distribution, the e¤ects of changes in the price cap on

expected output and surplus depend on the magnitude of its e¤ects on capacity

investment and capacity withholding, which have opposite signs. Capacity investment

is a single peaked function of the price cap: for low price caps it increases with the

price cap until it reaches a maximum at some binding price cap r�, and then decreases

with the price cap above r�. When the unit cost of capacity is large the signs of the

3Focusing on the monopolistic case allows us to avoid some potential conundrums that arise in

dynamic oligopolistic settings, which are distractions from the issue under scrutiny �the impact of

price cap regulation. For example, it is unclear what is the appropriate model of competition to

consider at the ex-post stage. Moreover, when demand is uncertain there are well known di¢ culties

therein to guarantee existence, uniqueness and symmetry of equilibrium �see, e.g., Reynolds and

Wilson (2000), Gabszewicz and Poddar (1997).
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e¤ects of changes in the price cap on expected output, expected surplus and capacity

investment coincide. Interestingly, when the unit cost of capacity is small, expected

output and expected surplus decrease with the price cap above and around r�, and

thus the optimal price cap is below r�. Price caps a¤ect the market price directly,

but also indirectly via their impact on the level of capacity. Thus, an increase of the

price cap increases the expected price above and around r�, but has an ambiguous

e¤ect below r�:

Thus, a binding price cap actually provides incentives for capacity investment.

Further, it discourages capacity withholding. Nonetheless, a price cap alone is unable

to provide the appropriate incentives for capacity investment and simultaneously

eliminate the ine¢ ciencies arising from capacity withholding: the optimal price cap

induces a low level of capacity, and does not prevent capacity withholding. Hence,

with demand uncertainty and capacity precommitment an optimal regulatory policy

may require using other instruments �e.g., forward markets or subsidies to capacity.

Earle et al. (2007) studies an oligopolistic model in which �rms make output

decisions ex-ante, i.e., �rms choose their output before the realization of demand and

supply it inelastically and unconditionally. In this setting, it shows that for price

caps near marginal cost the output is suboptimally low and may increase with the

price cap. Moreover, it establishes that the comparative static properties of price

caps that hold when the demand is deterministic fail for a generic stochastic demand

schedule.4 These results lead Earle et al. (2007) to conclude that the �standard

arguments supporting the imposition of price caps break down in the presence of

demand uncertainty.�

This sweeping conclusion of Earle et al. (2007) is unfounded. Moreover, the

source of its results is not demand uncertainty per se, but it is demand uncertainty in

conjunction with quantity precommitment (which is implicitly assumed in its model):

As we show, in the absence of quantity (or capacity) precommitment the properties of

price caps are the same whether the demand is deterministic or stochastic. Further, in

4Speci�cally, Earle at al. (2007) shows that for any demand distribution such that output de-

creases with the price cap at a given binding price cap r, it is possible to perturb the demand

distribution on an arbitrarily small interval (shifting the probability on the interval to the end-

points, thus creating two atoms) in such a way that with this perturbed demand distribution output

increases with the price cap near r.
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the more interesting setting studied in the present paper, in which capacity decisions

are made ex-ante and output decisions are made ex-post, we show that a price cap is

an e¤ective regulatory instrument to provide incentives for capacity investment and to

discourage capacity withholding, and that under standard regularity assumptions on

the demand distribution the comparative static properties of price caps are analogous

to those arising when capacity has no precommitment value. (In addition, the proof

of Earle et al. (2007)�s Theorem 6, claiming that its genericity result applies to the

present setting, is incorrect. See Lemus and Moreno (2014).5)

Other authors have studied price cap regulation in the presence of exogenous

technological progress �in our setting the unit cost of capacity and production are

constant over the regulatory period. Biglaiser and Riordan (2000), for example,

study the incentive properties of price cap to produce optimal capacity investment

and replacement. In their setting, they �nd that price caps provide better incentives

than rate-of-return regulation, although in their setting (as in ours) optimal price

caps must deal with a trade o¤ involving the incentives for capacity investment and

replacement. In an oligopolistic industry, Roques and Savva (2009) study the e¤ect

of price caps on the timing of investments when demand is uncertain, and �nd that as

in our setting a low price cap may be suboptimal as it may disincentivize investment.

Reynolds and Rietzke (2012) study the impact of price caps in oligopolistic markets

with endogenous entry, and identify conditions under which a price cap improves

welfare. Dobbs (2004) studies the e¤ect intertemporal price cap regulation when

a monopolist facing demand uncertainty has to decide the size and timing of its

investments, and shows that optimal price caps lead to under investment and quantity

rationing. Dixit (1991) studies a competitive market in which demand is uncertain

and �rms make ex-ante irreversible investments, and shows that introducing price

ceilings lead to delay investments and higher prices over time.

The paper is organized as follows: In Section 2 we study the e¤ects of price

caps in the absence of quantity precommitment. In Section 3 we describe the more

5Moreover, Grimm and Zoettl (2010) shows that under standard regularity assumptions the

comparative static properties of price caps are recovered also in the setting where �rms cannot

withhold capacity. This paper also provides a reduced form analysis of an oligopolistic setting

where �rms may withhold capacity, but mistakenly concludes that maximizing the expected surplus

amounts to maximizing capacity. In particular, its equation (5) providing the marginal revenue is

incorrect in region A �see Section 3.
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interesting setting in which a monopoly makes irreversible capacity investments ex-

ante and then chooses its output up to capacity upon the realization of demand, and

we derive the equilibrium capacity as a function of the price cap. In Section 4 we

study the comparative static properties of price caps in this setting. In Section 5 we

study optimal price caps. We discuss an example in Section 6, and we conclude in

Section 7. Appendix A contains the proofs. Appendix B studies the model of full

capacity utilization, and discusses the di¤ering results obtained in that setting.

2 Price Caps without Quantity Precommitment

Consider a monopoly that produces a good with constant returns to scale and unit

cost c 2 R+: The market demand is known with certainty and is given by D(x; p) =
maxfx � p; 0g; where p 2 R+ is the market price, and x 2 R+ is the consumers�
maximum willingness to pay for the good. In the monopoly equilibrium the output

q� and price p� are given by q�(x) = 0 and p�(x) � x if x < c, and by

q�(x) =
x� c
2

and p�(x) =
x+ c

2
;

otherwise. (Writing the price and output as functions of x will be useful in the sequel.)

The e¤ect of a price cap r 2 R+ on the monopoly equilibrium is well known. Denote

by P and Q the functions providing the price and output in the monopoly equilibrium

for each (r; x). A low price cap r < c leads the monopoly to serve no output, i.e.,

Q(r; x) = 0, whereas a high (non-binding) price cap r � p�(x) has no e¤ect on the

monopoly equilibrium, i.e., Q(r; x) = q�(x) and P (r; x) = p�(x): An intermediate

price cap r 2 [c; p�); however, increases the monopolist�s marginal revenue around
q�(x); and leads to an increase of the monopolist�s output to Q(r; x) = x� r > q�(x);
and to a decrease of the market price to P (r; x) = r < p�(x), see Figure 1. Thus,

a decrease of the price cap r on (c; p�) leads to an increase of the output and the

surplus, and to a decrease of the market price. Hence, a price cap r = c maximizes

the output as well as the surplus.

Let us consider now the case of demand uncertainty. (As noted above, demand

uncertainty may be interpreted also as variations of demand over time � see, e.g.,

Green and Newbery (1992).) Assume that the demand is the function D(x; p) given

above but x is now the realization of a random variable X with p.d.f. f and support
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Figure 1: The E¤ect of a Price Cap with a Deterministic Demand

on a bounded interval [�; �] � R+; where � > c: Studying the impact of a price

cap under demand uncertainty requires to specify the timing of decisions. Let us

consider a simple model in which the monopolist decides its output upon observing

the realization of demand.

In the absence of a price cap, for each demand realization x 2 [�; �] the monopoly
equilibrium output and price are given by q�(x) and p�(x) de�ned above. Write

P � = max
x2[c;�]

p�(x) = (� + c)=2:

The introduction of a price cap r 2 R+ has a simple e¤ect on the monopoly equi-
librium: a low price cap r < c leads the monopoly to serve no output regardless of

the realization of demand, i.e., Q(r; �) = 0. A high (non-binding) price cap r � P �;
results in an output Q(r; �) = q�(�) and price P (r; �) = p�(�): An intermediate price
cap r 2 [c; P �) is non-binding for low demand realizations, but becomes binding for
high demand realizations �see Figure 2.

The e¤ects of a price cap r on the monopolist�s output and price for each demand

realization are described in Table 1 below.

X [�; 2r � c) [2r � c; �]
P (r; x) p�(x) r

Q(r; x) q�(x) x� r

Table 1: Equilibrium Output and Price for r 2 [c; P �).
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Figure 2: The E¤ect of a Price Cap with Demand Uncertainty

Hence the expected output E(Q(r;X)) is given for r 2 (c; P �) by

E(Q(r;X)) =
1

2

Z 2r�c

c

(x� c) f(x)dx+
Z �

2r�c
(x� r) f(x)dx:

Di¤erentiating this expression, and noting that � > 2r � c for r < P �; yields

dE(Q(r;X))

dr
= �

Z �

2r�c
f(x)dx < 0:

Thus, as in the case of demand certainty the expected output and the expected surplus

decrease with the price cap on (c; P �). The expected price is not well de�ned since for

x < c the monopolist supplies no output. However, decreasing the price cap decreases

the market price for demand realizations x > 2r� c; and has no e¤ect on the market
price for demand realizations x 2 (c; 2r � c); and therefore unambiguously decreases
the expected price over the realizations in which there is trade. Thus, when demand

is stochastic setting a price cap r equal to the unit cost of production c maximizes the

expected output as well as the expected surplus, just as in the case of a deterministic

demand. We summarize these �ndings in Proposition 1. These results can be easily

extended to a Cournot oligopolistic setting.

Proposition 1. In the absence of quantity precommitment a binding price cap r

above the marginal cost c leads to an increase of the equilibrium expected output and

expected surplus, and to a decrease of the expected price. Moreover, the expected
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Figure 3: The E¤ect of Price Caps on Output without Quantity Precommitment.

output and the expected surplus decrease with r; whereas the expected price increases

with r. Further, r� = c maximizes the expected surplus.

Figure 3 illustrates the conclusions of Proposition 1. The expected output of the

monopoly as a function of the price cap E(Q(r;X)) is calculated assuming that X

is distributed uniformly on [0; 1]. The �gure also shows the output of a monopoly

facing a known demand D(E(X); p). As Figure 3 shows price caps have qualitatively

the same e¤ects whether the demand is deterministic or stochastic �the only e¤ect of

uncertainty is smoothing the non-di¤erentiability at the lowest non-binding price cap

arising when the demand is deterministic. Thus, price cap regulation is an e¤ective

instrument to mitigate market power and foster e¢ ciency whether the demand is

deterministic or stochastic.

This analysis is useful when �rms are not capacity constrained (or when capacity

can be installed instantly). Relevant examples are the Spanish or California electricity

markets, in which (at least in recent times) �rms have excess capacity and their bids

are short lived (i.e., �rms compete to serve the demand for short periods of time, e.g.,

for hourly or half hourly periods). Of course, price cap regulation has an impact on

�rms�capacity investments, which are long run decisions made prior the realization

of demand. Thus, endogenizing �rms�capacity investment decisions seems a natural

next step to take.
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3 Capacity Precommitment and Withholding

In what follows we study the impact of price caps in a model in which the monopolist

makes ex-ante capacity investment decisions and then, upon observing the realization

of demand, decides how much to produce, and may withhold capacity if doing so is

bene�cial. In this setting the level of capacity is a long run decision, whereas the

level of output is a short run decision. One may also interpret this setting as if the

monopolist decides its output before demand is realized, but once demand is realized

the monopolist decides how much to supply, and may supply less than its total output.

Relevant examples include the electricity markets mentioned above as well as markets

for agricultural products, sport events, hotel accommodation, etc.

Consider a monopolist facing an uncertain demand. As in Section 2, the market

demand is given for p 2 R+ byD(X; p) = maxfX�p; 0g, whereX is now a continuous

random variable. The monopolist must decide how much capacity to install before

the demand is realized. Once capacity is installed the good can be produced with

constant returns to scale up to capacity. The monopolist decides its output upon

observing the realization of the demand parameter X:

We denote by f and F the p.d.f. and c.d.f. of X; respectively, and reduce notation

by assuming that the support of X is the interval [0; 1].6 We assume that the cost

of installing a unit of capacity is a positive constant c such that E(X) > c: (This in-

equality rules out the trivial cases in which the monopolist installs no capacity.) Also,

we assume without loss of generality that the production cost is zero. Propositions

2-7 below identify the e¤ects of price caps in this setting.

Suppose that a regulatory agency imposes a price cap r 2 [0; 1]: Since the cost of
capacity is sunk and the cost of production (up to capacity) is zero, then at the stage of

output choice the monopolist maximizes revenue. If the monopolist had an unlimited

capacity, then the equilibrium output is as calculated in Section 2 for c = 0; i.e., for

x 2 [0; 1]; Q(r; x) = x � r � 1 � r if r < x=2; and Q(r; x) = x=2 � 1=2 if r � x=2:
Hence levels of capacity k > maxf1 � r; 1=2g are suboptimal since the monopolist
would always have idling capacity, and therefore since c > 0 may increase its pro�t

6This assumption reduces notation, and facilitates the presentation and the interpretation of our

results since the market price is always de�ned. However, it entails a small loss of generality because

the cost of production given capacity and the lower bound of the support of X coincide.
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Figure 4: Relevant Price Cap-Capacity Pairs.

by installing less capacity. Thus, we restrict attention to price cap-capacity pairs

(r; k) 2 [0; 1]2 such that k � maxf1 � r; 1=2g. Figure 4 describes a partition of this
set of price cap-capacity pairs into three regions, A = f(r; k) 2 [0; 1]2 j r � k � 1�rg,
B = f(r; k) 2 [0; 1]2 j k < minf1� r; rgg, and C = f(r; k) 2 [0; 1]2 j 1� r � k � 1=2g.
We calculate the equilibrium price and output in these regions for each realization

of the demand parameter X. Abusing notation, we continue to denote by P and Q

the price and output, which now are functions of the level of capacity as well as the

price cap and the realization of demand. Table 2A describes the prices and output

for (r; k) 2 A.

X [0; 2r) [2r; r + k) [r + k; 1]

P (r; k; x) x=2 r r

Q(r; k; x) x=2 x� r k

Table 2A: Equilibrium Output and Price for (r; k) 2 A.

Figure 5 illustrates the results in Table 2A. For low demand realizations, x < 2r,

marginal revenue remains positive for levels of output greater than the demand at

the price cap, q = x � r; hence neither the price cap nor the level of capacity are
binding, and therefore the outcome is the unconstrained monopoly equilibrium, i.e.,

q = p = x=2. For intermediate demand realizations, 2r � x < r + k, marginal
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Figure 5: The E¤ect of a Price Cap when (r; k) 2 A.

revenue for levels of output greater than q = x � r is negative, and therefore the
price cap is binding; hence the monopolist serves the demand at the price cap, and

withholds capacity. (Thus, for intermediate demand realizations a marginal decrease

of the price cap leads to an increase of output, much as in the models of Section 2.)

For high demand realizations, x � r+ k, marginal revenue equals the price cap up to
the level of capacity, and hence the monopolist supplies its entire capacity, the price

cap remains binding, and the demand is rationed. Note that for price cap-capacity

pairs in region A the market price P (r; k; x) is independent of the level of installed

capacity k:

Table 2B describes the prices and output for (r; k) 2 B.

X [0; 2k) [2k; r + k) [r + k; 1]

P (r; k; x) x=2 x� k r

Q(r; k; x) x=2 k k

Table 2B: Equilibrium Output and Price for (r; k) 2 B.

Figure 6 illustrates the results in Table 2B. For low demand realizations x < 2k

marginal revenue remains positive for levels of output greater than the demand at the

price cap, and therefore neither the price cap nor the level of capacity are binding;

hence the outcome is the unconstrained monopoly equilibrium, i.e., q = p = x=2. For

11
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Figure 6: The E¤ect of a Price Cap when (r; k) 2 B.

intermediate demand realizations 2k � x < r + k, marginal revenue is positive for

output levels greater than k; and therefore the monopolist supplies its full capacity,

i.e., q = k; the price cap is non-binding since p = x� k < r + k � k = r. (Thus, for
these realizations changes in the price cap have a¤ects neither the level of output nor

the market price.) For high demand realizations, x > r+k, the monopolist continues

supplying its entire capacity, i.e., q = k, but the price cap becomes binding, i.e.,

p = r, and the demand is rationed, i.e., x � p = x � r > q. In region B the market

price P (r; k; x) depends on the level of capacity.

Table 2C describes the prices and output for (r; k) 2 C.

X [0; 2k) [2k; 1]

P (r; k; x) x=2 x� k
Q(r; k; x) x=2 k

Table 2C: Equilibrium Output and Price for (r; k) 2 C.

In region C, the price cap is never binding. The monopolist withholds capacity

only for low demand realizations, x < 2k, and supplies its entire capacity other-

wise. Demand is never rationed. The market price P (r; k; x) depends on the level of

capacity.
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Note an important feature of equilibrium that stands in contrast to the case where

the monopolist is not capacity constrained: when both capacity and the price cap are

binding, demand is rationed.

The monopolist�s revenue is

R(r; k; x) = P (k; r; x)Q(r; k; x);

and its expected pro�t is

��(r; k) = E (R(r; k;X)� ck) = E (R(r; k;X))� ck:

Clearly �� is continuous on A [B [ C:
In equilibrium, the monopolist�s capacity maximizes ��(r; �). Thus, in an interior

equilibrium the capacity k� is such that the monopolist�s expected marginal revenue

from installing an additional in�nitesimal unit of capacity MR(r; k); where

MR(r; k) :=
@E (R(r; k;X))

@k
;

is equal to the marginal cost of capacity c; i.e., k� solves the equation

MR(r; k) = c: (1)

In addition, the second order condition

@MR(r; k)

@k
< 0 (2)

holds at k�.

Using the results described in tables 2A, 2B and 2C we readily calculate the

monopolist�s expected revenue

E (R(r; k;X)) =

Z 1

0

P (k; r; x)Q(r; k; x)f(x)dx

for (r; k) in either A; B or C: Di¤erentiating this expression we obtain the expected

marginal revenue, which is

MR(r; k) =

Z 1

r+k

rf(x)dx = r[1� F (r + k)] (3)

for (r; k) 2 A;

MR(r; k) =

Z r+k

2k

(x� 2k) f(x)dx+
Z 1

r+k

rf(x)dx (4)

13



for (r; k) 2 B; and

MR(r; k) =

Z 1

2k

(x� 2k)f(x)dx (5)

for (r; k) 2 C. Since (3) and (4) coincide for k = r, and (4) and (5) coincide for

r > 1=2 and k = 1� r, then MR in continuous on A [B [ C.
In region A; increasing capacity a¤ects the revenue only for high demand real-

izations x > r + k for which the monopolist supplies its entire capacity. For these

demand realizations the price cap r is binding. Thus, the expected revenue increases

by r times the probability that the additional marginal unit of capacity is supplied,

as shown in equation (3). In region B; a marginal increase of capacity increases

revenue not only for high demand realizations x > r + k, but also for intermediate

demand realizations 2k < x < r + k; in which the price cap is non-binding and the

monopolists supplies its full capacity. In region C, a marginal increase of capacity

a¤ects the revenue only when x > 2k.

Di¤erentiating MR we get

@MR(r; k)

@k
= �rf(r + k) < 0 (6)

for (r; k) 2 A;

@MR(r; k)

@k
= �kf (r + k)� 2 [F (r + k)� F (2k)] < 0 (7)

for (r; k) 2 B; and
@MR(r; k)

@k
= �2 [1� F (2k)] < 0 (8)

for (r; k) 2 C: Hence the expected marginal revenue function MR is decreasing, and
therefore the inequality (2) holds on A[B [C. Moreover, since (6) and (7) coincide
for k = r; then MR is di¤erentiable on A [ B [ C, except perhaps in the boundary
of B and C:

Thus, for all r 2 [0; 1] the monopolist�s equilibrium capacity k�(r) is the unique

solution of the equation (1). Moreover, the Maximum Theorem implies that k� is a

continuous function. We summarize these results in Proposition 2.

Proposition 2. The monopoly equilibrium capacity k�(�) is a well de�ned continuous
function of the price cap r on [0; 1].

Calculating the equilibrium capacity is somewhat involved. Obviously, the equi-

librium capacity is zero for price caps below the unit cost of capacity c. Moreover,
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it is easy to see that the equilibrium capacity is also zero for price caps r above but

near the unit cost of capacity: because the probability of demand realizations x < c

is positive, for r above but near c the expected marginal revenue is below c even for

k = 0. Therefore installing capacity entails losses. Thus, the equilibrium capacity

is zero unless the price cap is su¢ ciently high that expected marginal revenue for

levels of capacity near zero is greater than c, i.e., r � r(c); where r is de�ned by the
equation MR(r; 0) = c: Hence, unlike in the setting in which the monopolist makes

output decisions ex-post, price caps near the unit cost of capacity are suboptimal.7

As in the setting in which the monopolist makes output decisions ex-post, su¢ -

ciently large price caps are non-binding. The upper bound on the interval of binding

price caps is determined by the distribution of the demand parameter X; speci�cally

this bound �r(c) is de�ned by the equation c =MR(r; 1� r):
Intermediate price caps r 2 [r(c); �r(c)) a¤ect the equilibrium capacity in more

complex ways. We are able to identify the level of capacity assuming that the hazard

rate of X is increasing. In particular, as we shall see in the next section, unlike in the

setting in which the monopolist is not capacity constrained, the equilibrium capacity

is not monotonically decreasing with the price cap in this interval.

Proposition 3 makes these results precise. Write M� for the maximum value of

M(r) := MR(r; r) on (0; 1=2): If c 2 (0;M�); then the equation M(r) = c has

two solutions r�(c); r+(c); which satisfy r(c) < r�(c) < r+(c) < �r(c) < 1. If c 2
(M�; E(X)), then c �MR(r; r) for all r 2 [0; 1=2]. Denote by kC the solution to the
equation Z 1

2k

(x� 2k)f(x)dx = c:

(The left hand side of this equation is MR(r; k) for (r; k) 2 C.) Assume that the
hazard rate of X is increasing. Then for r 2 (r(c); �r(c)) the equation

MR(r; k) =

Z r+k

2k

(x� 2k) f(x)dx+
Z 1

r+k

rf(x)dx = c:

has a unique solution, which we denote by kB(r): (The left hand side of this equation

7If the lower bound of the support of X is � > c (instead of zero as we have assumed), then

for r = c the expected marginal revenue is c and pro�ts are zero for k 2 [0; � � c], whereas pro�ts
are negative for k > � � c: Hence the equilibrium capacity may be positive, and may increase or

decrease with r near the unit cost of capacity depending of the distribution of demand �see Grimm

and Zoettl (2010)�s Section 4 for a discussion of this issue.
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is MR(r; k) for (r; k) 2 B.)

Proposition 3. The equilibrium capacity is determined as follows:

(3.1) If r 2 [0; r(c)), then k�(r) = 0, and if r 2 [�r(c); 1], then k�(r) = kC.
(3.2) Assume that the hazard rate of X is increasing. If c 2 (0;M�), then

k�(r) = kA(r) = F
�1(1� c

r
)� r;

for r 2 [r�(c); r+(c)] and k�(r) = kB(r) for r 2 (r(c); �r(c))n[r�(c); r+(c)]: If c 2
(M�; E(X)), then k�(r) = kB(r) for all r 2 [r(c); �r(c)).

Using the results in tables 2A, 2B and 2C, and the description on the equilibrium

capacity given in Proposition 3, we can calculate the expected output and market

price as well as the expected (consumer and total) surplus, thus providing a complete

description of the monopoly equilibrium. We study in the next section the e¤ect of

changes in the price cap on these values.

4 Comparative Statics

In this section we study the comparative static properties of price caps when the

hazard rate of X is increasing and its p.d.f. f is di¤erentiable. We �rst show that

under these regularity assumptions on the distribution of demand the equilibrium

capacity k� is a single peaked function of the price cap r on (r(c); �r(c)). Hence the

comparative static properties of the equilibrium capacity relative to the price cap that

maximizes the equilibrium capacity r�(c) 2 (r(c); �r(c)) are analogous to those price
caps have on expected output in the setting in which the monopolist is not capacity

constrained. We state these results in Proposition 4. The proof of Proposition 4,

which is given in Appendix A, establishes these facts by a standard argument that

involves implicitly di¤erentiating the equilibrium level of capacity using the �rst order

condition for pro�t maximization.

Proposition 4. Assume that the hazard rate of X is increasing and its p.d.f. f is

di¤erentiable. Then k�(�) is a di¤erentiable single peaked function on (r(c); �r(c)); i.e.,
k�(�) has a maximum at some r�(c) 2 (r(c); �r(c)), and dk�(r)=dr > 0 on (r(c); r�(c))
whereas dk�(r)=dr < 0 on (r�(c); �r(c)):

16



Next, we discuss the e¤ects of changes in the price cap on the expected output

and the expected price. The expected output is readily calculated using the results

described in tables 2A, 2B and 2C. In region A; the monopolist maintains idling

capacity for intermediate demand realizations in which the price cap is binding. Thus,

in region A the expected output strictly decreases with the price cap given the level

of capacity. Since for price caps r 2 [r�(c); r+(c)] the pair (r; k�(r)) 2 A; this implies
that for price caps in this interval decreasing the price cap increases the expected

output provided that the equilibrium capacity does not decrease, i.e.,

dk�

dr
� 0) dE(Q(r; k�(r); X)

dr
< 0:

Hence when the price cap that maximizes capacity r�(c) is in the interval [r�(c); r+(c)],

the expected output decreases with the price cap on [r�(c); r+(c)]. Therefore the price

cap that maximizes output is below r�(c).

In region B; however, the output does not dependent directly on the price cap,

but only indirectly via its impact on the equilibrium level of capacity. Thus, for price

caps r 2 [r(c); �r(c))n[r�(c); r+(c)]; for which (r; k�(r)) 2 B; the signs of the e¤ects of
changes in the price cap on expected output and capacity are the same, i.e.,

dE(Q(r; k�(r); X)

dr
R 0, dk�

dr
R 0:

Let us discuss the e¤ect of changes in the price cap on the expected price. In

region A the market price is independent of k, and therefore a change in the price cap

only has a direct (positive) e¤ect on P: Hence the expected market price increases

with the price cap regardless of its impact on capacity. Since (r; k�(r)) 2 A for

r 2 [r�(c); r+(c)], then
dE(P (r; k�(r); X)

dr
> 0

on [r�(c); r+(c)]: In region B; however, the market price depends on k, and therefore a

change in the price cap has an indirect e¤ect on the market price via its impact on the

level of capacity, as well as a direct (positive) e¤ect. When this indirect e¤ect is also

positive, i.e., when dk�=dr < 0; then the total e¤ect is positive, but when the indirect

e¤ect is negative, the sign of the total e¤ect is ambiguous. Since (r; k�(r)) 2 B for

r 2 [r(c); �r(c))n[r�(c); r+(c)], then

dk�

dr
� 0) dE(P (r; k�(r); X)

dr
> 0;
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and therefore
dE(P (r; k�(r); X)

dr
> 0

on [r(c); r�(c)). The sign of this derivative on (r�(c); �r(c)] is ambiguous. Obviously,

changes in the price cap on [0; r(c)) [ (�r(c); 1] have no e¤ect on the expected price.
We summarize these results in Proposition 5, which proof is given in Appendix A.

Proposition 5. Assume that the hazard rate of X is increasing and its p.d.f. f is

di¤erentiable.

(5.1) If r�(c) 2 (r�(c); r+(c)), then the expected output decreases with the price cap
above and around r�(c). If r�(c) 2 (r(c); �r(c))n[r�(c); r+(c)], then the expected output
increases with the price cap on (r(c); r�(c)) and decreases on (r�(c); �r(c)).

(5.2) The expected price increases with the price cap on [r�(c); r+(c)] [ [r�(c); �r(c)):

Proposition 5 reveals that with demand uncertainty and capacity precommitment

the comparative static properties of price caps are complex. In particular, when c

is su¢ ciently small the capacity maximizing price cap r�(c) does not maximize the

expected output: decreasing the price cap below r�(c) leads to an increase of the

expected output even though installed capacity decreases. Of course, this fact has

direct implications on the price cap that maximizes the expected surplus, as we shall

see in the next section.

5 Optimal Price Caps

A regulator who wants to maximize the expected surplus using a price cap as its

single instrument, and cannot force the monopolist to serve its full capacity, must

trade o¤ the incentives for capacity investment and capacity withholding, and must

account for the cost of installing capacity (some of which may be seldom utilized).

Thus, the optimal price cap may di¤er from the price cap that maximizes capacity

investment r�(c). (In contrast, in the model of full capacity utilization studied by

Earle et al. (2007) and Grimm and Zoettl (2010), maximizing the expected surplus

simply amounts to maximizing capacity � see Appendix B.) Indeed, we show that

when the unit cost of capacity is small this is the case: the optimal price cap is

below r�(c). When the unit cost of capacity is high, however, providing appropriate
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incentives for capacity investment becomes the dominant objective, and thus the

optimal price cap is r�(c).8

Following the literature, we simplify somewhat the problem by assuming e¢ cient

rationing, i.e., when demand is rationed the consumers with the largest willingness

to pay receive priority to buy the good.

Denote by S the gross surplus (i.e., the surplus ignoring the cost of capacity)

as a function of the price cap, capacity and demand realization, (r; k; x). Table 3A

describes the function S for (r; k) in region A.

X [0; 2r) [2r; r + k) [r + k; 1]

S(r; k; x) 3
8
x2 1

2
(x2 � r2) 1

2
(2x� k) k

Table 3A: Gross Surplus in Region A:

Since for (r; k) 2 A the monopolist withholds capacity for demand realizations x 2
[0; r + k); then the expected gross surplus depends directly on the price cap, as well

as indirectly through its e¤ect on the monopolist capacity decision.

Table 3BC below describes the gross surplus in region B [ C:

X [0; 2k) [2k; 1]

S(r; k; x) 3
8
x2 1

2
(2x� k) k

Table 3BC: Gross Surplus in Regions B and C.

When (r; k) 2 B [C the price cap has no direct e¤ect on the expected gross surplus,
but only has an indirect e¤ect via its in�uence on the monopolist capacity choice.

The (net) surplus is given for r 2 [0; 1] by

�S(r) := E(S(r; k�(r); X)� ck�(r):

An optimal price cap maximizes �S on [0; 1]:

Using the results of tables 3A and 3BC we can readily calculate �S: Di¤erentiating
�S yields

d �S(r)

dr
= s(r)I(r)[r�(c);r+(c)] +

dk�(r)

dr

�Z 1

r+k�(r)

(x� k�(r))f(x)dx� c
�
; (9)

8Obviously a price cap a¤ects the distribution of surplus also. A regulator who wants to maximize

the consumer surplus, for example, would choose as well a price cap below r�(c) when the cost of

capacity is low.
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where I is the indicator function, i.e., I(r)[r�(c);r+(c)] = 1 for r 2 [r�(c); r+(c)] and
I(r)[r�(c);r+(c)] = 0 otherwise, and

s(r) = �r[F (r + k�(r))� F (2r)]:

The expression (9) has a simple interpretation: For price caps r 2 [r�(c); r+(c)]
the price cap-equilibrium capacity pair (r; k�(r)) is in region A: In this region, for

intermediate demand realizations the output depends on the price cap. Hence a

change in the price cap has a direct e¤ect on surplus captured by the term s(r),

as well as an indirect e¤ect via its impact of capacity investment. For price caps

r 2 [0; 1]n[r�(c); r+(c)] the price cap-equilibrium capacity pair (r; k�(r)) is in region

B [C: In this region a price cap only has an indirect e¤ect on surplus via its impact
of capacity investment. Since the equilibrium capacity is k�(r) = r in the boundary

of regions A and B[C, then d �S(r)=dr is continuous, and �S is di¤erentiable, on [0; 1].
If r�(c) 2 [r�(c); r+(c)]; then k�(r) = kA(r) > r and dk�(r)=dr � 0 for all r 2

[r�(c); r
�(c)] by Proposition 4, and therefore s(r) < 0 and

d �S(r)

dr
< 0

for all r 2 [r�(c); r
�(c)]: Hence the expected surplus decreases with the price cap

at r�(c). Even though decreasing the price cap below r�(c) decreases capacity, it

discourages capacity withholding and increases surplus. Thus, the optimal price cap

is below r�(c):

For r 2 [r(c); �r(c)]n[r�(c); r+(c)], we show that

d �S(r)

dr
= 0, dk�(r)

dr
= 0;

and that if r�(c) 2 (r(c); �r(c))n[r�(c); r+(c)]; then r�(c) is the unique global maximizer
of �S on (r(c); �r(c)) �see the proof of Proposition 6 in Appendix A. Proposition 6

summarizes these results.

Proposition 6. Assume that hazard rate of X is increasing and its p.d.f. f is di¤er-

entiable, and let r�(c) be the capacity maximizing price cap identi�ed in Proposition

4. If r�(c) 2 [r�(c); r+(c)] then the expected surplus decreases with the price cap above
and around r�(c), whereas if r�(c) 2 (r(c); �r(c))n[r�(c); r+(c)], then r�(c) maximizes
the expected surplus.
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In the absence of capacity precommitment an optimal price cap r�(c) = c elim-

inates all ine¢ ciencies. With capacity precommitment, however, an optimal price

cap has to trade o¤ the incentives for capacity investment and capacity withholding.

We show that a price cap alone is unable to eliminate ine¢ ciencies, i.e., cannot pro-

vide the appropriate incentives to install the optimal level of capacity and discourage

capacity withholding. Speci�cally, we show that the level of capacity installed by

the monopolist with the optimal price cap, k�(r�(c)); is below the level that will be

socially optimal if the entire capacity was served for each demand realization.

Let us consider the arti�cial scenario in which a regulator chooses the level of

capacity as well as the level of output in order to maximize (net) surplus. In this

scenario the surplus realized, denoted by S�; when the level of capacity is k 2 [0; 1] is

S�(k) =
1

2

Z k

0

x2f(x)dx+
1

2

Z 1

k

(2x� k)kf(x)dx� ck:

The socially optimal level of capacity, denoted by kW ; maximizes S�(k). Di¤erenti-

ating S� yields
dS�(k)

dk
=

Z 1

k

(x� k) f(x)dx� c;

and
d2S�(k)

dk2
= �[1� F (k)] < 0:

Thus, kW solves the equation dS�(k)=dk = 0:

It is easy to show that kW > k�(r�(c)) �see the proof of Proposition 7 in Appen-

dix A. Thus, a price cap alone cannot provide appropriate incentives to install the

optimal level of capacity. In addition, an optimal price cap alone cannot eliminate

the ine¢ ciencies arising from capacity withholding.

Proposition 7. Assume that hazard rate of X is increasing and its p.d.f. f is

di¤erentiable. Then the equilibrium capacity with the optimal price cap is below the

optimal level of capacity kW if capacity cannot be withheld. Moreover, the optimal

price cap does not eliminate capacity withholding.

In Appendix B we discuss the impact of price caps when the monopolist cannot

withhold capacity, and show by example that in this setting a price cap is not able to

induce the monopolist to install the optimal level of capacity either. In this example,

in which X is uniformly distributed, the surplus realized and the level of capacity

21



installed with the optimal price cap are below the corresponding surplus and capacity

in the setting in which the monopolist may withhold capacity (see Figure 10), which

suggests that disallowing capacity withholding may not be an advisable regulatory

measure.

6 An Example

Assume that X is uniformly distributed, i.e., f(x) = 1. Thus, X has an increasing

hazard rate h(x) = (1 � x)�1; and its p.d.f. f is di¤erentiable. Since E(X) = 1=2,
we consider values of the unit costs of capacity c 2 (0; 1=2).
Let us calculate the equilibrium capacity in this setting. The function kA is given

by

kA(r) = F
�1(1� c

r
)� r = 1� c

r
� r:

The marginal revenue in region B �equation (4) �is

MR(r; k) =
k2

2
+
r

2
[2 (1� 2k)� r]:

Solving equation (1) yields

kB(r) = 2r �
p
2c� r (2� 5r):

The marginal revenue in region C �equation (5) �is

MR(r; k) =
1

2
(1� 2k)2 :

Solving equation (1) yields

kC =
1�

p
2c

2
:

Let us calculate the functions r; r�, r+ and �r: The function r is the solution to

the equation

c =MR(r; 0) =

Z r

0

xf(x)dx+ r (1� F (r)) = r (2� r)
2

;

i.e.,

r(c) = 1�
p
1� 2c:

The function M is given for r 2 [0; 1] by

M(r) =MR(r; r) = r (1� F (2r)) = r(1� 2r):
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Figure 7: Equilibrium Capacity.

The functions r� and r+, i.e., the smaller and larger solutions to the equation c =

M(r) are readily calculated as

r�(c) =
1

4

�
1�

p
1� 8c

�
; r+(c) =

1

4

�
1 +

p
1� 8c

�
:

These functions are well de�ned for c 2 (0; 1=8), where M� = 1=8 is the maximum

value theM . For c > 1=8 the above equation has no solution on [0; 1], i.e., the interval

[r�(c); r+(c)] is empty. The function �r solves the equation

c =MR(r; 1� r) =
Z 1

2(1�r)
xf(x)dx� 2 (1� r) [1� F (2 (1� r))] = (1� 2r)2

2
;

i.e.,

�r(c) =
1 +

p
2c

2
:

It is easy to check that

c < r(c) <
1

2
< �r(c) < 1

for c 2 (0; 1=2); and
r(c) < r�(c) < r+(c) <

1

2
< �r(c)

for c 2 (0; 1=8).
Figure 7 provides a description of the function k�(r) for c 2 (0; 1=2). For c � 1=9

the equilibrium capacity k�(r) reaches its maximum at the price cap r�A =
p
c 2

[r�(c); r+(c)]. For c > 1=9; the equilibrium capacity k�(r) reaches its maximum at
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Figure 8: Capacity, Expected Output, and Surplus for c = 1=32:

r�B =
�
1 + 2

p
10c� 1

�
=5 2 (r(c); �r(c))n[r�(c); r+(c)]. Interestingly, for c 2 (1=9; 1=8)

the equilibrium capacity k�(r) is increasing in the interval (r�(c); r+(c)]; and reaches

its maximum at r�(c) 2 (r+(c); �r(c)):
We calculate the expected surplus. If r < r(c); then the expected surplus is

�S(r) = 0. If r 2 [r�(c); r+(c)], which requires c < 1=8, then the expected surplus is

�S(r) =
r3 (1 + 4r3) + 3r2 (c (c� 2r (1� r))� r3)� c3

6r3
:

If r 2 (r(c); �r(c))n[r�(c); r+(c)]; then the expected surplus is

�S(r) =
r

2
(4� 9r)� c(1 + 2r) +

�
c+ 2r � 1

2

�p
2c� r (2� 5r):

And if r 2 [�r(c); 1] then
�S(r) =

1� 6c
8

+

p
2c3

2
:

Figure 8 displays the equilibrium capacity and surplus as functions of the price

cap when the unit cost of capacity is c = 1=32: The price cap that maximizes capac-

ity is r�A =
p
2=8 whereas, consistently with Proposition 6, the expected surplus is

maximized at r = 1=8 < r�A:
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Figure 9: Capacity, Expected Output, and Surplus for c = 3=25:

Figure 9 shows the graphs of the capacity and the expected surplus for c = 3=25:

For this unit cost of capacity we have [r�(c); r+(c)] = [2=10; 3=10]: (Note that c =

3=25 < 1=8:) The price cap that maximizes both capacity and expected surplus is

r�B = (2
p
5+5)=25 2 (r(c); �r(c)), i.e., the maximum capacity is reached at a price cap-

capacity pair in region B; and consistently with Proposition 6, the expected surplus

is maximal at this price cap.

Suppose that a regulator chooses the level of capacity, assuming that for each

demand realization the entire capacity is served to the consumers that value the good

the most, in order to maximize surplus. Using the results obtained in Section 5 we

calculate the expected surplus as a function of the capacity as

S�(k) =
k2 (k � 3)

6
+
k (1� 2c)

2
;

which is maximized at kW = 1�
p
2c:

For c = 1=32 the optimal price cap is rW < r�, the level of capacity installed

is k�(rW ) = (0:86) kW ; and the expected surplus is �S(rW ) = (0:93)S�(kW ): For c =

3=25; the optimal price cap is rW = r�; and k�(rW ) ' (0:61)kW and �S(rW ) =

(0:81)S�(kW ): These numbers suggest that with capacity withholding price caps are

more e¤ective when unit cost of capacity is small than when it is large.
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7 Conclusions

In the absence of quantity precommitment, whether the demand is deterministic or

stochastic, price cap regulation provides an e¤ective instrument to mitigate market

power: If �rms produce the good with constant returns to scale, for example, de-

creasing the price cap (while maintaining it above marginal cost) leads to an increase

of (expected) output and surplus, and to a decrease of the market price. Moreover,

a price cap equal to marginal cost is able to eliminate ine¢ ciencies.

With demand uncertainty and capacity precommitment (and withholding), price

cap regulation has to deal with a trade o¤ involving the incentives for capacity in-

vestment and capacity withholding: decreasing the price cap alleviates capacity with-

holding but may discourage capacity investment. As a consequence, the optimal price

cap may not maximize capacity investment. Indeed, when the cost of capacity is low

maximizing the expected surplus calls for a low price cap in order to discourage capac-

ity withholding, even at the cost of reducing capacity investment. Moreover, under

standard regularity assumptions on the demand, the comparative static properties

of price caps above the price cap that maximizes capacity are analogous to those

obtained in the case of a deterministic demand. Price cap regulation provides an use-

ful instrument to mitigate market power and enhance e¢ ciency, although it cannot

restore e¢ ciency.

It is noteworthy that even if capacity withholding is not an issue, i.e., even if

the regulator may enforce full capacity utilization, price cap regulation does not

provide appropriate incentives for capacity investment either. In fact, as the example

discussed in Appendix B shows, both capacity investment and surplus may be smaller

with full capacity utilization than with capacity withholding.

8 Appendix A: Proofs

Proof of Proposition 3. Assume that the hazard rate of X, h (�) = f (�) =[1�F (�)];
is increasing. We calculate the equilibrium capacity k�(r): Let us consider �rst price

caps r 2 [0; 1=2]: Then ��(r; �) takes values in regions A and B:
If the capacity that maximizes ��(r; �) is such that (r; k) 2 A; then solving the
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equation (1) for MR given by (6) yields

kA(r) = F
�1(1� c

r
)� r:

Hence

kA(r) + r = F
�1(1� c

r
) < 1;

and therefore kA(r) < 1 � r. If (r; kA(r)) 2 A, then r � kA(r). This inequality is

equivalent to

c � r (1� F (2r)) =MR(r; r):

Write M(r) :=MR(r; r): Di¤erentiating M yields

dM(r)

dr
= (1� F (2r))� 2rf(2r) = (1� F (2r)) (1� 2rh(2r)) ;

which is positive for values of r close to zero and negative for values of r close to

1=2. Since h is increasing, then the function M(r) is strictly concave and reaches

its maximum value M� on (0; 1=2): If c < M�; then the equation MR(r; r) = c has

two solutions on (0; 1=2), which we denote by r�(c) and r+(c) with r�(c) < r+(c).

In this case, for r 2 [r�(c); r+(c)]; we have (r; k�A(r)) 2 A: If r =2 [r�(c); r+(c)], i.e.,
c > MR(r; r), then ��(r; �) decreases with k in region A; and reaches its maximum in

region B.

Assume that the capacity that maximizes ��(r; �) is such that (r; k) 2 B: Denote
by kB(r) the solution to equation (1) for MR given by (4). Hence kB(r) satis�es

0 < kB(r) < r:

(Recall that we are identifying the monopolist capacity for r < 1=2; and therefore

kB(r) < r implies kB(r) < 1� r.) The inequality kB(r) < r is equivalent to

c > MR(r; r):

If c �MR(r; r), i.e., r 2 [r�(c); r+(c)]; then ��(r; �) increases with k in region B; and
reaches its maximum in region A. The inequality kB(r) > 0 is equivalent to

c <

Z r

0

xf(x)dx+ r (1� F (r)) =MR(r; 0);

i.e., the expected marginal revenue when output is zeroMR(r; 0)must be greater than

the unit cost of capacity c. If this inequality does not hold, then ��(r; �) decreases with
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k in region B and reaches its maximum at k� = 0: Since dMR(r; 0)=dr = 1�F (r) > 0
on (0; 1); then the function MR(�; 0) has an inverse, which we denote by r: Then the
condition c < MR(r; 0) may be written as r > r(c). Since

MR(r; 0) <

Z r

0

xf(x)dx+ r (1� F (r)) = r;

then

c =MR(r(c); 0) < r(c):

Therefore the equilibrium capacity is k� = 0 for a range of price caps above the cost

of capacity, r 2 (c; r(c)]. Also, since

MR(r; 0) > r (1� F (r)) > r (1� F (2r)) =MR(r; r);

then r < r(c) (i.e., c > MR(r; 0)) implies r < r�(c).

Let us now consider price caps r 2 (1=2; 1]: Then ��(r; �) takes values in regions B
and C:

Assume that the capacity that maximizes ��(r; �) is such that (r; k) 2 B. If

r � r(c), then ��(r; �) decreases with k and reaches its maximum at k = 0: If r > r(c);
then ��(r; �) reaches its maximum in region B if the solution to condition (1), kB(r),

satis�es

kB(r) < 1� r:

This condition is equivalent to

c >

Z 1

2(1�r)
xf(x)dx� 2 (1� r) [1� F (2 (1� r))] =MR(r; 1� r):

Note that
dMR(r; 1� r)

dr
= 2(1� F (2 (1� r))) > 0:

Hence the function MR(r; 1 � r) has an inverse on (1=2; 1) ; which we denote by
�r(c), and therefore we may write the above inequality as r < �r(c): If r � �r(c), then
��(r; �) increases with k in region B and reaches its maximum in region C. Note that

for r = 1 we have MR(r; 1 � r) = MR(1; 0) = E(X). Hence, since c < E(X) by

assumption, we have �r(c) < 1.

Finally, assume that the capacity that maximizes ��(r; �) is such that (r; k) 2 C.
Denote by kC the solution to the condition (1) forMR given by equation (5). Clearly

kC is independent of the price cap r. Also, since MR(r; 1=2) = 0; then kC < 1=2

28



for all c 2 (0; E(X)). Since the expected marginal revenue decreases with k; then
kC > 1� r implies c < MR(r; 1� r): Moreover, since r > 1=2 and MR is decreasing,
then MR(r; 1� r) < MR(r; r): Hence kC solves the monopolist problem if r � �r(c).
Otherwise, i.e., if r < �r(c); then ��(r; �) decreases with k in region C and reaches its
maximum in region B.

As shown above c < r(c): If c < M�, then we have r(c) < r�(c) < r+(c) < 1=2:

Since 1=2 < �r(c) < 1; then

c < r(c) < r�(c) < r+(c) < 1=2 < �r(c) < 1:

If c �M�, then c �MR(r; r) for all r 2 [0; 1=2], and the equilibrium capacity lies in

region B for all r 2 [0; 1=2]. �

The following lemma will be useful in the proof of Proposition 4.

Lemma 1. Let g be a real valued function on R, di¤erentiable on some interval
(a; b); and satisfying g0(a) > 0 > g0(b); and g00(y) < 0 for all y 2 (a; b) such that
g0(y) = 0. Then g has a unique global maximizer on [a; b]; y� 2 (a; b), and g0 is

positive on (a; y�) and negative on (y�; b):

Proof. Let y� = supfy 2 (a; b) j g0(y) > 0g and y�� = inffy 2 (a; b) j g0(y) < 0g:
Since g0 is continuous on (a; b) ; then g0(y�) = g0(y��) = 0; and therefore a < y�� �
y� < b. We show that y� = y��; which establishes the lemma. Suppose by way

of contradiction that y�� < y�: Since both g00(y�) and g00(y��) are negative, then for

" 2 (0; y� � y��) su¢ ciently small

g0(y�� + ") < 0 < g0(y� � "):

Hence g0(�y) = 0 for some �y 2 (y���"; y�+"), and g0 is negative (positive) for y below
(above) and near �y: Hence g00(�y) > 0; which is a contradiction. �

Proof of Proposition 4. Let r 2 (r(c); �r(c)): Since the expected marginal revenue
MR(r; k) is di¤erentiable in regions A [B; we can di¤erentiate equation (1) to get

@MR(r; k)

@k
dk +

@MR(r; k)

@r
dr = 0:

And since MR is decreasing, i.e.,

@MR(r; k)

@k
< 0;
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then
dk�

dr
= �@MR(r; k)

@r

�
@MR(r; k)

@k

��1
;

and
dk�

dr
T 0, @MR(r; k)

@r
T 0:

Since f is di¤erentiable, then MR is twice di¤erentiable, and

d2k�

dr2
= �

�
@MR(r; k)

@k

��1
d

dr

�
@MR(r; k�(r))

@r

�
+
@MR(r; k)

@r

�
@MR(r; k)

@k

��2
d

dr

�
@MR(r; k�(r))

@k

�
= �

�
@MR(r; k)

@k

��1�
d

dr

�
@MR(r; k�(r))

@r

�
+
dk�

dr

d

dr

�
@MR(r; k�(r))

@k

��
:

Hence, for r such that dk�=dr = 0; we have

d2k�

dr2
T 0, d

dr

�
@MR(r; k�(r))

@r

�
T 0:

If (r; k�(r)) 2 A, then di¤erentiating MR given in (3) yields

@MR(r; k)

@r
= 1� F (r + k)� rf(r + k) = (1� F (r + k)) (1� rh (r + k)) ;

and

d

dr

�
@MR(r; k�(r))

@r

�
= �f(r + k)

�
1 +

dkA
dr

�
(1� rh (r + k))

� (1� F (r + k)) (h (r + k) + rh0 (r + k))
�
1 +

dkA
dr

�
:

Assume that dkA=dr = 0. Then 1� rh (r + k�(r)) = 0, and

d

dr

�
@MR(r; k�(r))

@r

�
= � (1� F (r + k�(r))) (h (r + k�(r)) + rh0 (r + k�(r))) :

If the hazard rate is increasing (i.e., h0 > 0), then we have

d2kA
dr2

< 0;

and therefore every critical point of kA is a local maximum.

If (r; kB(r)) 2 B; then di¤erentiating MR given in (4) yields

@MR(r; k)

@r
= 1� F (r + k)� kf(r + k) = (1� F (r + k)) (1� kh(r + k)) ;
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and

d

dr

�
@MR(r; k�(r))

@r

�
= �f(r + k�(r)) (1� k�(r)h(r + k�(r)))

�
1 +

dkB
dr

�
� (1� F (r + k�(r))) k�(r)h0(r + k�(r))

�
1 +

dkB
dr

�
� (1� F (r + k�(r)))h(r + k�(r))dkB

dr
:

Assume that dkB=dr = 0. Then 1� k�(r)h (r + k�(r)) = 0, and

d

dr

�
@MR(r; k�(r))

@r

�
= � (1� F (r + k�(r))) k�(r)h0(r + k�(r)):

If the hazard rate is increasing (i.e., h0 > 0) we have

d2kB
dr2

< 0;

and therefore every critical point of kB is a local maximum.

Thus, for r 2 (r(c); �r(c)); d2k�(r)=dr2 < 0 whenever dk�(r)=dr = 0: Moreover,

since kB(�r(c)) = 1� �r(c), and

@MR(r; 1� r)
@r

����
r=�r(c)

= 1� F (�r(c) + (1� �r(c)))� (1� �r(c)) f (�r(c) + (1� �r(c)))

= � (1� �r(c)) f(1)

< 0;

then dkB(�r(c))=dr < 0: And since kB(r(c)) = 0, and

@MR(r; 0)

@r

����
r=r(c)

= 1� F (r(c)) > 0;

then dkB(r(c))=dr > 0: Hence k� has a global maximum at some r�(c) 2 (r(c); �r(c)) ;
and satis�es dk�=dr > 0 on (r(c); r�(c)) and dk�=dr < 0 on (r�(c); �r(c)) by Lemma

1. Since k� is continuous on [0; 1], is equal to zero on [0; r(c))) and is equal to kC on

[�r(c); 1); this implies that k� is quasi-concave, i.e., single peak, on [0; 1]. �

Proof of Proposition 5. The expected output is

E(Q(r; k�(r); X) =

Z 2r

0

x

2
f(x)dx+

Z r+k�(r)

2r

(x� r)f(x)dx+
Z 1

r+k�(r)

k�(r)f(x)dx;

for r 2 [r�(c); r+(c)]; and

E(Q(r; k�(r); X) =

Z 2k�(r)

0

x

2
f(x)dx+

Z 1

2k�(r)

k�(r)f(x)dx
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for r 2 (r(c); �r(c))n[r�(c); r+(c)]. Hence

dE(Q(r; k�(r); X)

dr
= �[F (r + k�(r))� F (2r)] + dk

�

dr
(1� F (r + k�(r)))

for r 2 [r�(c); r+(c)], and

dE(Q(r; k�(r); X)

dr
=
dk�

dr
(1� F (2k�(r)))

for r 2 (r(c); �r(c))n[r�(c); r+(c)].
Thus,

dk�

dr
� 0) dE(Q(r; k�(r); X)

dr
< 0

for r 2 [r�(c); r+(c)], that is, the expected output decreases with the price cap beyond
the price cap that maximizes capacity, and therefore the price cap that maximizes

output is below r�(c). Moreover,

dE(Q(r; k�(r); X)

dr
R 0, dk�

dr
R 0:

for r 2 [r(c); �r(c))n[r�(c); r+(c)], that is, the expected output increases with the price
cap for r 2 (r(c); r�(c)); and decreases for r 2 (r�(c); �r(c)).
Likewise for r 2 [r�(c); r+(c)] the expected price is

E(P (r; k�(r); X) =

Z 2r

0

x

2
f(x)dx+

Z 1

2r

rf(x)dx;

and for r 2 (r(c); �r(c))n[r�(c); r+(c)] it is

E(P (r; k�(r); X) =

Z 2k�(r)

0

x

2
f(x)dx+

Z r+k�(r)

2k�(r)

(x� k�(r))f(x)dx+
Z 1

r+k�(r)

rf(x)dx:

Hence, for r 2 [r�(c); r+(c)]

dE(P (r; k�(r); X)

dr
= 1� F (2r) > 0:

Also, for r 2 (r(c); �r(c))n[r�(c); r+(c)];

dE(P (r; k�(r); X)

dr
= �dk

�

dr
[F (r + k�(r))� F (2k�(r))] + [1� F (r + k�(r))];

and therefore
dk�

dr
� 0) dE(P (r; k�(r); X)

dr
> 0: �
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Proof of Proposition 6. The expected gross surplus is

E(S(r; k;X)) =
3

8

Z 2r

0

x2f(x)dx+
1

2

Z r+k

2r

(x2 � r2)f(x)dx (10)

+
1

2

Z 1

r+k

(2x� k)kf(x)dx:

for (r; k) 2 A; and is

E(S(r; k;X)) =
3

8

Z 2k

0

x2f(x)dx+
1

2

Z 1

2k

(2x� k) kf(x)dx: (11)

for (r; k) 2 B [ C.
For r 2 [0; 1] the net surplus is �S(r) = E(S(r; k�(r); X))� ck�(r):
For price caps r 2 [r�(c); r+(c)] the price cap-equilibrium capacity pair (r; k�(r))

is in region A: Di¤erentiating �S given in (10) yields

d �S(r)

dr
= �r[F (r + k�(r))� F (2r)] + dk

�(r)

dr

�Z 1

r+k�(r)

(x� k�(r))f(x)dx� c
�
;

Recall that r�(c) is the capacity maximizing price cap identi�ed in Proposition 4. If

r�(c) 2 [r�(c); r+(c)]; then dk�(r�(c))=dr = 0 and k�(r�(c)) = kA(r�(c)) > r�(c) imply

d �S(r�(c))

dr
= �r�(c)[F (r�(c) + k�(r�(c)))� F (2r�(c))] < 0:

Hence the optimal price cap is below r�(c):

For r 2 (r(c); �r(c))n[r�(c); r+(c)] we have (r; k�(r)) 2 B [ C: Di¤erentiating �S
given in (11) yields

d �S(r)

dr
=
dk�(r)

dr

�Z 1

2k�(r)

(x� k�(r))f(x)dx� c
�
:

Since (r; k�(r)) 2 B, then k�(r) < r, and

MR(r; k�(r)) =

Z r+k�(r)

2k�(r)

(x� 2k�(r)) f(x)dx+
Z 1

r+k�(r)

rf(x)dx = c:

HenceZ 1

2k�(r)

(x�k�(r))f(x)dx�c =
Z r+k�(r)

2k�(r)

k�(r)f(x)dx+

Z 1

r+k�(r)

(x�k�(r)�r)f(x)dx > 0;

and therefore
d �S(r)

dr
= 0, dk�(r)

dr
= 0:
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Di¤erentiating d �S(r)=dr we get

d2 �S(r)

dr2
=

d2k�(r)

dr2

�Z 1

2k�(r)

(x� k�(r))f(x)dx� c
�

�
�
dk�(r)

dr

�2
[1� F (2k�(r))]� 2k�(r)f(2k�(r)):

If d �S(r)=dr = 0; then dk�(r)=dr = 0; which as shown above implies d2k�(r)=dr2 < 0.

Hence d2 �S(r)=dr2 < 0: Thus, by Lemma 1 if r�(c) 2 (r(c); �r(c))n[r�(c); r+(c)]; then
r�(c) is the unique global maximizer of �S on (r(c); �r(c)). �

Proof of Proposition 7. We show that kW > k�(r�(c)) � k�(r) for all r 2 [0; 1]. Let
us �x c and reduce notation by writing k� and r� for k�(r�(c)) and r�(c); respectively.

If r� 2 [r�(c); r+(c)], then k� � r� and

MR(r�; k�) =

Z 1

r�+k�
r�f(x)dx = c

imply

dS�(k)

dk

����
k=k�

=

Z 1

k�
(x� k�) f(x)dx�

Z 1

r�+k�
r�f(x)dx

=

Z r�+k�

k�
(x� k�)f(x)dx+

Z 1

r�+k�
(x� r� � k�)f(x)dx

> 0:

Hence kW > k�. If r� 2 (r(c); �r(c))n[r�(c); r+(c)], then k� � r� and

MR(r�; k�) =

Z r�+k�

2k�
(x� 2k�)f(x)dx+

Z 1

r�+k�
r�f(x)dx = c

imply

dS�(k)

dk

����
k=k�

=

Z 1

k�
(x� k�)f(x)dx�

�Z r�+k�

2k�
(x� 2k�)f(x)dx+

Z 1

r�+k�
rf(x)dx

�
=

Z 2k�

k�
(x� k�) f(x)dx

+

Z r�+k�

2k�
k�f(x)dx+

Z 1

r�+k�
(x� r� � k�)f(x)dx

> 0:

Hence kW > k� as well. �
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9 Appendix B: Full Capacity Utilization

Let us consider an alternative model in which the monopolist chooses its output before

the demand is realized and supplies it unconditionally. This setting is similar to that

of Section 2, except that output decision is made ex-ante. Alternatively, renaming

output as capacity we may view this model as a variation of the model discussed

in sections 3 to 6, except that the monopolist cannot withhold capacity, i.e., must

supply its entire capacity for each demand realization, and therefore its only choice

is how much capacity to install. This model is studied by Earle et al. (2007) and

Grim and Zoettl (2010). In order to discuss the di¤ering e¤ects of price caps in

this setting and in the setting in which the monopolist may withhold capacity, we

describe the monopolist�s expected pro�t and the expected surplus, and then calculate

the equilibrium and study the comparative static properties of price caps assuming

that X is distributing uniformly.

Monopoly Equilibrium without Capacity Withholding

Assume that a regulatory agency imposes a price cap r 2 [0; 1]. Table B1 identi�es
the market equilibrium price, denoted by P̂ , when the price cap is binding, i.e.,

k < 1� r.
X [0; k) [k; r + k) [r + k; 1]

P̂ (r; k; x) 0 x� k r

Table B1: Equilibrium Price for k 2 [0; 1� r).

Table B2 identi�es the market equilibrium price when the price cap is not binding,

i.e., k > 1� r.
X [0; k) [k; 1]

P̂ (r; k; x) 0 x� k

Table B2: Equilibrium Price for k 2 [1� r; 1].

Hence the expected price is

E(P̂ (r; k;X)) =

Z r+k

k

(x� k) f(x)dx+
Z 1

r+k

rf(x)dx

for k < 1� r; and

E(P̂ (r; k;X)) =

Z 1

k

(x� k)f(x)dx
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for k � 1� r: The monopolist chooses the level of capacity in order to maximize its
expected pro�t �̂ given for (r; k) 2 [0; 1] by

�̂(r; k) = E
�
[P̂ (r; k;X)� c]k

�
= [E(P̂ (r; k;X))� c]k:

Clearly �̂ is continuous on [0; 1]2.

Let r 2 [0; 1]: In an interior equilibrium k solves @�̂(r; k)=@k = 0 and satis�es

@2�̂(r; k)=@k2 � 0: We have

@2�̂(r; k)

@k2
= �k(f(r + k)� f(k))� 2(F (r + k)� F (k))

for k < 1� r; and
@2�̂(r; k)

@k2
= kf(k)� 2 (1� F (k))

for k � 1�r. The signs of these expressions are ambiguous, and therefore it is unclear
whether the monopolist�s expected pro�t �̂(r; �) is a concave function. (In fact, it
is not di¢ cult to �nd examples for which �̂(r; �) is not concave �e.g., take f(x) =
2 (1� x) and r = 1=4.) Thus, in contrast to the setting in which the monopolist may
withhold capacity, in the present setting uniqueness of equilibrium is not warranted.

Table B3 below describes the gross surplus, denoted by Ŝ; assuming e¢ cient

rationing. Note that Ŝ is independent of r.

X [0; k) [k; 1)

Ŝ(r; k; x) 1
2
x2 1

2
k(2x� k)

Table B3: Surplus.

Assume that for each r 2 [0; 1] there is a unique monopoly equilibrium, which we
denote by k̂�(r). Then for each r the expected (net) surplus is

E(Ŝ(r; k̂�(r); X))� ck̂�(r):

Since Ŝ is independent of r; and since pro�t maximization implies E(P̂ (r; k̂�(c); X)) >

c whenever k̂�(c) > 0; then maximizing the expected surplus amounts to maximizing

capacity, i.e., the optimal price cap maximizes the level of installed capacity. For

each c 2 (0; E(X)) denote by r̂�(c) the price cap maximizes capacity, and

Ŝ�(c) := E(Ŝ(r; k̂�(r̂�(c)); X)� ck̂�(r̂�(c))
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for the maximum expected surplus.

An Example: The Uniform Distribution

Assume that X is uniformly distributed and c 2 (0; 1=2): Hence

E(P̂ (r; k;X)) =
1

2
r (2� 2k � r)

for k < 1� r; and
E(P̂ (r; k;X)) =

1

2
(1� k)2

for k � 1� r. Moreover,
@2�̂(r; k)

@k2
= �2r

for k < 1� r; and
@2�̂(r; k)

@k2
= �2 + 3k

for k � 1 � r. Therefore �̂(r; �) is strictly concave, and the monopoly equilibrium
k̂�(r) is unique, for all r 2 (0; 1]: If the equilibrium capacity is k < 1 � r; then the
equilibrium capacity solves the equation

@�̂(r; k)

@k
= �rk + 1

2
r (2� 2k � r)� c = 0:

Solving this equation we get

k1(r) =
1

2

�
1� c

r
� r
2

�
:

Hence k1(r) is the solution to the monopolist problem provided 0 < k1(r) < 1 � r;
i.e.,

r(c) := 1�
p
1� 2c < r < 1

3

p
6c+ 1 +

1

3
:= r(c):

If r < r(c); then expected pro�t decreases with k and the equilibrium capacity is

k� = 0: If r > r(r); then expected pro�t increases with k at k = 1� r:
If the equilibrium capacity is k � 1� r; then the equilibrium capacity solves the

equation

� (1� k) k + 1
2
(1� k)2 = c:

Solving this equation we get

k2 =
2�

p
1 + 6c

3
:
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Figure 10: Capacity Investment and Surplus with and without Withholding.

Note that k2 > 0 for all c 2 (0; 1=2): Hence k2 is the solution to the monopolist

problem provided k2 � 1� r, i.e., r � r(c): If r < r(c) the expected pro�t decreases
with k at k = 1� r:
The equilibrium capacity is therefore given by k̂� (r) = 0 if r � [0; r (c)]; k̂� (r) =

k1 (r) if r 2 (r(c); r(c)); and k̂� (r) = k2 if r 2 [r(c); 1]: The maximum capacity is

installed for r̂� solving
dk1(r)

dr
=
1

2

�
c

r2
� 1
2

�
= 0;

i.e., r̂� =
p
2c: (Note that d2k1(r)=dr2 = �c=r3 < 0:) The maximum capacity is

k1(r̂
�) =

1

2

�
1�

p
2c
�
> k̂2:

Hence a binding price increases expected surplus.

As shown in Section 6 the optimal capacity is kW = 1 �
p
2c = 2k̂�(r̂�): Hence

a price cap alone is unable to provide incentives for the monopolist to install the

optimal level of capacity. In fact, price caps provide worse incentives for capacity

investment and generate a lower expected surplus under full capacity utilization that

when the monopolist can withhold capacity as Figure 10 shows. (Note that with

capacity withholding the maximum expected surplus that can be realized with an

optimal price cap is no less than �S(r�(c)).)
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